2018-00413 - Post-doctoral - Unsupervised learning with deep nets for intrinsically motivated exploration of dynamical systems

ثبت نشده
چکیده

The Flowers team studies computational mechanisms allowing robots and humans to acquire openended repertoires of skills through life-long learning. This includes the processes for progressively discovering their bodies and interaction with objects, tools and others. In particular, we study mechanisms of intrinsically motivated learning (also called curiosity-driven active learning), autonomous unsupervised exploration, imitation and social learning, multimodal statistical inference, embodiment and maturation and self-organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2018-00413 - Post-doctoral - Unsupervised learning with deep nets for intrinsically motivated exploration of dynamical systems

The Flowers team studies computational mechanisms allowing robots and humans to acquire openended repertoires of skills through life-long learning. This includes the processes for progressively discovering their bodies and interaction with objects, tools and others. In particular, we study mechanisms of intrinsically motivated learning (also called curiosity-driven active learning), autonomous ...

متن کامل

2018-00413 - Post-doctoral - Unsupervised learning with deep nets for intrinsically motivated exploration of dynamical systems

The Flowers team studies computational mechanisms allowing robots and humans to acquire openended repertoires of skills through life-long learning. This includes the processes for progressively discovering their bodies and interaction with objects, tools and others. In particular, we study mechanisms of intrinsically motivated learning (also called curiosity-driven active learning), autonomous ...

متن کامل

2018-00413 - Post-doctoral - Unsupervised learning with deep nets for intrinsically motivated exploration of dynamical systems

A propos du centre ou de la direction fonctionnelle The Flowers team studies computational mechanisms allowing robots and humans to acquire open-ended repertoires of skills through life-long learning. This includes the processes for progressively discovering their bodies and interaction with objects, tools and others. In particular, we study mechanisms of intrinsically motivated learning (also ...

متن کامل

Unsupervised Learning of Goal Spaces for Intrinsically Motivated Goal Exploration

Intrinsically motivated goal exploration algorithms enable machines to discover repertoires of policies that produce a diversity of effects in complex environments. These exploration algorithms have been shown to allow real world robots to acquire skills such as tool use in high-dimensional continuous state and action spaces. However, they have so far assumed that self-generated goals are sampl...

متن کامل

Intrinsically Motivated Goal Exploration

Intrinsically motivated goal exploration algorithms enable machines to discover repertoires of policies that produce a diversity of effects in complex environments. These exploration algorithms have been shown to allow real world robots to acquire skills such as tool use in high-dimensional continuous state and action spaces. However, they have so far assumed that self-generated goals are sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018